Activation Mechanisms of Natural Killer Cells during Influenza Virus Infection
نویسندگان
چکیده
During early viral infection, activation of natural killer (NK) cells elicits the effector functions of target cell lysis and cytokine production. However, the cellular and molecular mechanisms leading to NK cell activation during viral infections are incompletely understood. In this study, using a model of acute viral infection, we investigated the mechanisms controlling cytotoxic activity and cytokine production in response to influenza (flu) virus. Analysis of cytokine receptor deficient mice demonstrated that type I interferons (IFNs), but not IL-12 or IL-18, were critical for the NK cell expression of both IFN-γ and granzyme B in response to flu infection. Further, adoptive transfer experiments revealed that NK cell activation was mediated by type I IFNs acting directly on NK cells. Analysis of signal transduction molecules showed that during flu infection, STAT1 activation in NK cells was completely dependent on direct type I IFN signaling, whereas STAT4 activation was only partially dependent. In addition, granzyme B induction in NK cells was mediated by signaling primarily through STAT1, but not STAT4, while IFN-γ production was mediated by signaling through STAT4, but not STAT1. Therefore, our findings demonstrate the importance of direct action of type I IFNs on NK cells to mount effective NK cell responses in the context of flu infection and delineate NK cell signaling pathways responsible for controlling cytotoxic activity and cytokine production.
منابع مشابه
Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity
Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36-48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathog...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملInvariant NKT Cells: Regulation and Function during Viral Infection
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have bee...
متن کاملWhat Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins
The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected sub...
متن کاملModeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses
Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with ...
متن کامل